

Today's Topics

- Experiment planning make a simple design -Replicates, the number of factors and treatments,
- Field management treatment & growth -Timing of water stress and fertilizer application
- Data collection in your field
 Seeding rate, tillerings or panicles of rice plant
- Data Processing How to use MS Excel (Basic function of MS Excel)

Simplify your experiment

Key words: factor(s) and treatment(s)

Many factors such as seeding method, plant density, fertilizer rates, etc. are in one trial.

Each factor influence the conclusion of your trial.

Complicate experimental Design

 \rightarrow Difficult to analyze the main factor(s)

After the calculation we can get results but it is difficult to understand what is the most important factor among them.

Control and Treatment —Example of no control —

We must set up the control in our same experiments to compare the other treatment. We select the no treatment as the control like no-fertilizer application or traditional method in case of seeding rates.

We need to compare the control and the other treatments in the same trial.

An example in a report: First and the most important finding is that the yield of NERICA in the normal cropping season is exceedingly high. The average yield of 2.23 tons per hectare is twice as large as the average in sub-Saharan Africa.

In this paper, the yield of NERICA is compared with the average yield of upland rice in sub-Sahara Africa although the author did not plant other upland rice varieties in the same trial.

Table 1. Effe	cts of differ	rent seed rat	e of broadca	asting on yie	ld and yield o	components	ofrice
Treatment	Plant height	No. of effective tiller/plant	Panicle length	No. of spikelet /plant	No. of seed /plant	1000 grains weight	Grain yie (t/ha)
50Kg/ha	69.13	4.67	17.73	8.00	66.87	25.93	1.
60Kg∕ha	69.93	3.87	18.33	7.87	58.33	26.77	2.
70Kg∕ha	69.87	4.53	18.33	8.27	58.80	25.87	1.
80Kg/ha	64.47	4.47	17.53	7.67	55.27	25.53	1.
90Kg/ha	67.53	5.00	19.01	8.07	66.67	25.37	1.
100Kg/ha	62.73	4.13	15.90	6.73	46.87	25.17	1.
110Kg/ha	60.47	3.73	16.37	7.27	49.67	24.87	1.4
120Kg/ha	60.40	3.33	16.10	6.73	42.53	24.73	1.3
130Kg/ha	58.60	3.60	14.57	6.13	32.33	24.80	1.4
140Kg/ha	68.00	4.47	17.50	7.73	62.53	25.23	2.
Mean	65.11	4.18	17.14	7.45	53.99	25.43	1.
SD	4.33	0.53	1.37	0.71	11.12	0.63	0.
CV(%)	6.64	12.77	7.97	9.47	20.60	2 4 7	15.

Which is the control?

Was the plant type such as panicle weight type or panicle number type considered?

Field Management in trials

Key words;

Characteristics of rice

- Growth Length (Early, middle, or late varieties)
- Plant Type (Panicle number type or panicle weight type)

Timing of the treatment

- Water stress timing
- Fertilizer Application Timing

Growth stage & Treatment

The timing of the treatment should be depend on each growth stage

Data collection & Rice characteristics — Plant type on panicle —

Some author concluded that farmers evaluated NERICA as having excellent tillering ability.

But NERICA was not compared with other *O. sativa* varieties.

Sometimes I found that many culms or panicles are because of the many seeding as shown in the next slide.

Data Collection											
Entry	F	Field layout				Data sheet					
Variety	Rep 1	Rep 2	Rep 3			Rep 1	Rep 2	Rep 3			
1 NERICA 1	NERICA 1	NERICA 2	WAB 56-104		1						
2 NERICA 2	IRAT 136	NERICA 4	INARIS 88		2						
3 NERICA 3	NERICA 4	CG 14	NERICA 8		3						
4 NERICA 4	INARIS 88	Kologbe	Yomkoyo		4						
5 NERICA 5	NERICA 2	NERICA 1	NERICA 3		5						
6 NERICA 6	WAB 56-104	NERICA 7	Sefa fingo		6						
7 NERICA 7	CG 14	Yomkoyo	IRAT 136		7						
8 NERICA 8	NERICA 8	NERICA 5	Kologbe		8		X				
9 WAB 56-104	Yomkoyo	NERICA 6	NERICA 7		9						
10 CG 14	NERICA 3	INARIS 88	NERICA 5		10						
11 IRAT 136	NERICA 6	Sefa fingo	NERICA 2		11						
12 INARIS 88	Sefa fingo	NERICA 3	CG 14		12						
13 Yomkoyo	NERICA 5	IRAT 136	NERICA 1		13						
14 Sefa fingo	Kologbe	NERICA 8	NERICA 4		14						
15 Kologbe	NERICA 7	WAB 56-104	NERICA 6		15						
			1	/							

Data Collection										
Entry	Field layout				Data sheet					
Variety	Rep 1	Rep 2	Rep 3	İΓ		Rep 1	Rep 2	Rep 3		
1 NERICA 1	NERICA 1	NERICA 2	WAB 56-104							
2 NERICA 2	IRAT 136	NERICA 4	INARIS 88							
3 NERICA 3	NERICA 4	CG 14	NERICA 8							
4 NERICA 4	INARIS 88	Kologbe	Yomkoyo							
5 NERICA 5	NERICA 2	NERICA 1	NERICA 3							
6 NERICA 6	WAB 56-104	NERICA 7	Sefa fingo							
7 NERICA 7	CG 14	Yomkoyo	IRAT 136							
8 NERICA 8	NERICA 8	NERICA 5	Kologbe							
9 WAB 56-104	Yomkoyo	NERICA 6	NERICA 7							
10 CG 14	NERICA 3	INARIS 88	NERICA 5							
11 IRAT 136	NERICA 6	Sefa fingo	NERICA 2							
12 INARIS 88	Sefa fingo	NERICA 3	CG 14							
13 Yomkoyo	NERICA 5	IRAT 136	NERICA 1							
14 Sefa fingo	Kologbe	NERICA 8	NERICA 4							
15 Kologbe	NERICA 7	WAB 56-104	NERICA 6							
Record the data on the sheet in accordance with the field layout.										

Significant Figure for mean, SD, and SE

Sometimes we find many figures after decimal point like 22.34587 in tables in reports. It is very difficult for us to check and follow the data.

Because MS Excel calculates automatically depending on the size of the cell.

Significant Figure for mean, SD, and SE

There is no need to show many digits after the decimal point when expressing the mean, standard deviation and standard error. As a general guide, divide the standard error by three (3), and look at the digit of not zero. We express the mean until the digit and take one more digit for the standard error.

Example 1: In case the results of calculation for a mean and standard error is 4.895 ± 0.382 , the standard error (0.382) is divided by three (0.382 / 3 = 0.124), and the answer is 0.124. Therefore, the mean is expressed until ten's place and standard error is expressed until hundred's place (4.9 ± 0.38). The standard deviation is pursuant to the mean.

Example 2: In case the results of for a mean and standard error is 5.223 ± 0.292 , divide the standard error (0.292) by three (0.292 / 3 = 0.0973), and the answer is 0.0973. Therefore, the mean is expressed until hundred's place and standard error is expressed until thousand's place (5.22 ± 0.292). The standard deviation is pursuant to the mean.

	Variety	Culm length	Panicle Length	1000 GW	Yield	
		(cm)	(cm)	(g)	(kg/ha)	
1	FKR 47	68.73	17.33	31.33	2472.6	We use the value of the SE
2	IDSA 27	65.27	16.20	30.07	2122.7	
3	IR 74371	67.10	17.53	17.73	1645.5	For example, we use 1.49626.
4	IR 7502	77.73	19.13	19.87	3235.4	
5	IR 75506	70.77	18.47	21.07	2747.0	We divide 1 49626 by 3
6	IR 75516	78.80	19.13	25.33	3089.5	And the ensurer is 0.470
7	IR 7S517	76.67	17.53	29.53	2184.4	And the answer is 0.478***
8	IR 75517	78.60	18.87	26.27	2288.4	
9	IR 75518	83.47	19.67	24.80	2391.8	The figure which is not zero is 4
10	IR 75518	78.20	18.87	28.87	2242.4	It is the figure of ten's place
11	IR 75517	76.33	22.07	28.53	2485.4	So we understand the mean of
12	IR 75518	79.00	20.20	29.93	1468.2	So we understand the mean of
13	WAB 100	76.27	19.40	25.67	1924.0	figure of the culm length should
14	WAB 272	80.40	16.80	29.00	2400.8	be Shown 76.7,
15	AD0 48	83.13	19.20	25.40	3007.2	SD = 6.0
16	AD0 12	86.60	19.87	25.33	3788.9	SE 1.50
	Mean	76.69	18.70	26.17	2468.4	SE = 1.50
	CV (%)	7.8	7.8	14.9	24.2	
	LSD (5%)	7.5	1.9	3.9	903.7	
	SD	5.98504271	1.45006537	3.90901432	597,43999	
	SE	1.49626068	0.36251634	0.97725358	149.359997	

Important issues in the trial

The homogeneous rice growth and few missing hills in the field are the most important.

If you have a good skill on the statistics, But in case rice growth in the field has some problems such as many missing hills, heterogeneous growth, and so on, the results of the field trial may not be able to reflect the field situation properly in particular for the yield component.

Field management, therefore, is also very important as well as field layout, data collection, and data processing

