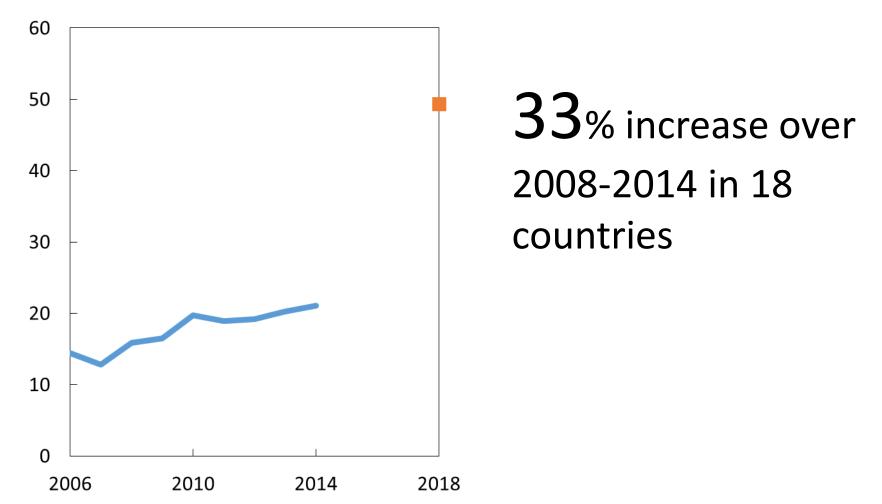


Challenges and opportunities to boost the rice sector in sub-Saharan Africa

Kazuki Saito

Africa Rice Center

6th CARD General Meeting on 18-19 Nov 2015


Content

- Recent rice production & NRDS targeted production in 2018
- Harvested area, yield and consumption
- Yield gap and its causes
- Yield growth rate and its associated factors
- Conclusions
- (Innovations)

Content

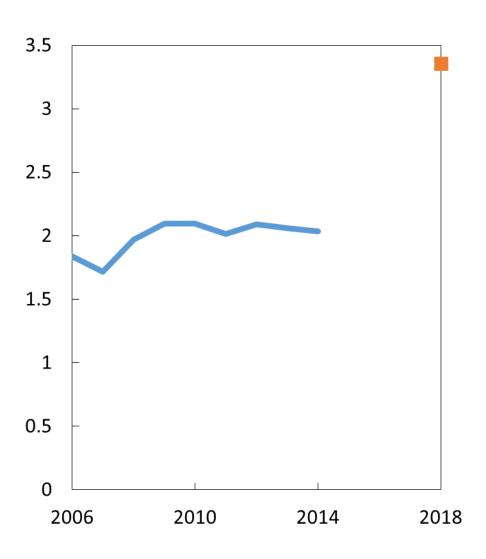
- Recent rice production & NRDS targeted production in 2018
- Harvested area, yield and consumption
- Yield gap and its causes
- Yield growth rate and its associated factors
- Conclusions
- (Innovations)

Rice production (x1 million t)

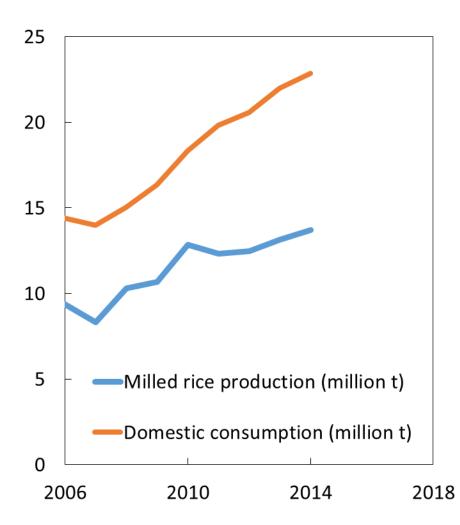
Source: NRDS and USDA (2015)

West Africa: Benin, Burkina, Cote d'Ivoire, Ghana, Guinea, Liberia, Mali, Nigeria, The Gambia, Togo, Sierra Leone Central Africa: Cameroon, Congo (Kinshasa)

Southeast Africa: Kenya, Madagascar, Mozambique, Tanzania, Uganda


Harvested area (x1 million ha)

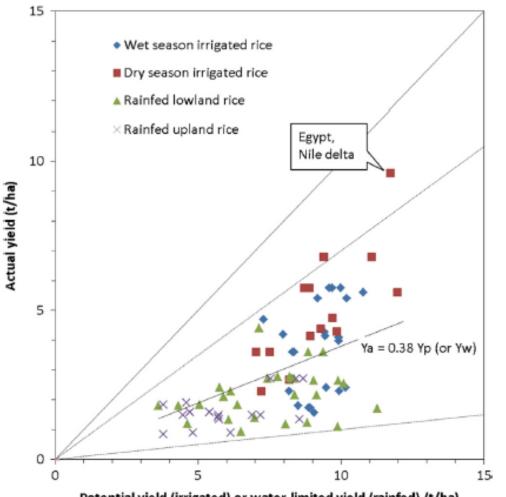
29% increase over 2008-2014


Rapid increase from 2009

Rice yield (t/ha)

3% increase over 2008-2014 94 kg/ha/year over 2007-2010 4 kg/ha/year over 2011-2014

Demand vs. supply


Summary

- Increased gap between demand vs. supply
- Rice yield has stagnated
- Need to understand reasons:

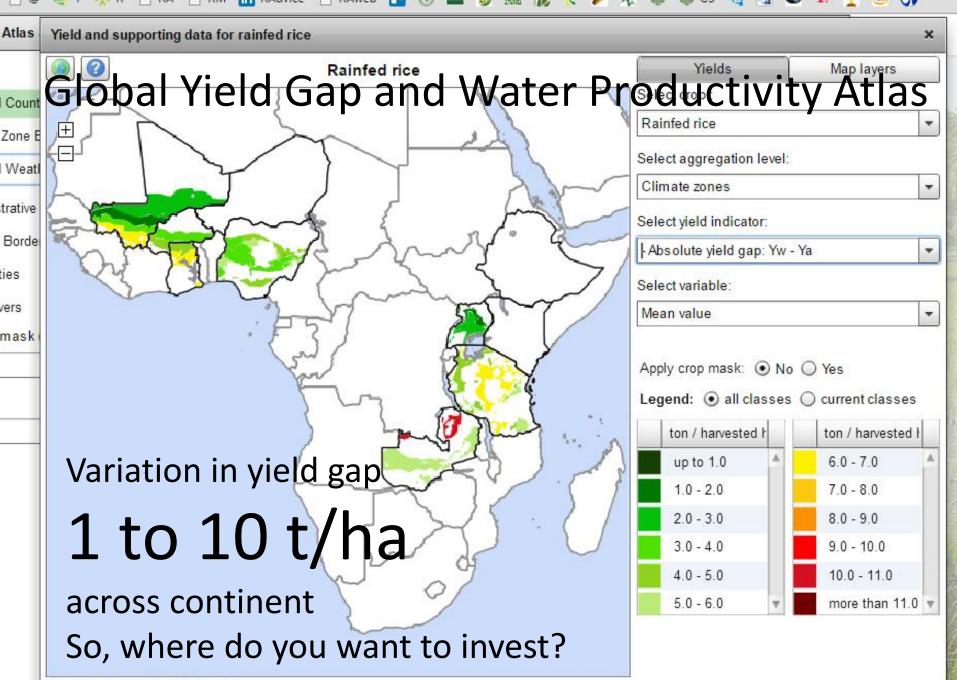
Content

- Recent rice production & NRDS targeted production in 2018
- Harvested area, yield and consumption
- Yield gap and its causes
- Yield growth rate and its associated factors
- Conclusions
- (Innovations)

Large yield gap in SSA

Potential yield (irrigated) or water-limited yield (rainfed) (t/ha)

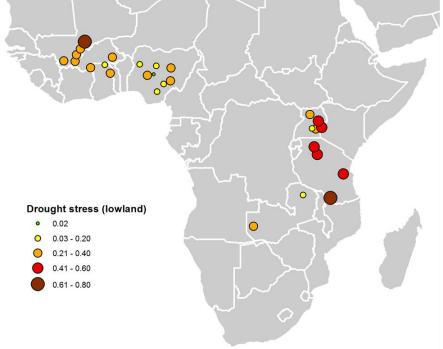
Fig. 3. Simulated and actual yields for all sites in Africa simulated in the Global Yield Gap Atlas (GYGA) project. Lines shown are the 1:1 line, relative yields at 10% and 70% of potential yields, and the regression line through all data points.

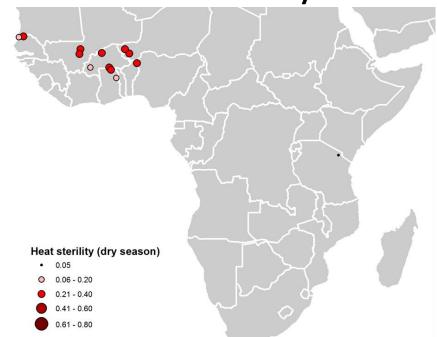

Relative yields are **40**% for irrigated rice in wet season;

55% for irrigated rice in dry season;

27% for rainfed

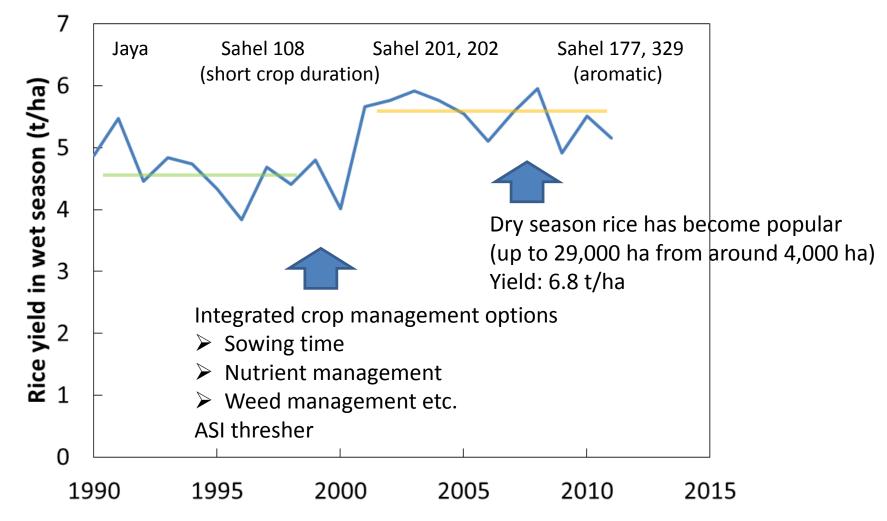
rice


(van Oort et al. 2015)

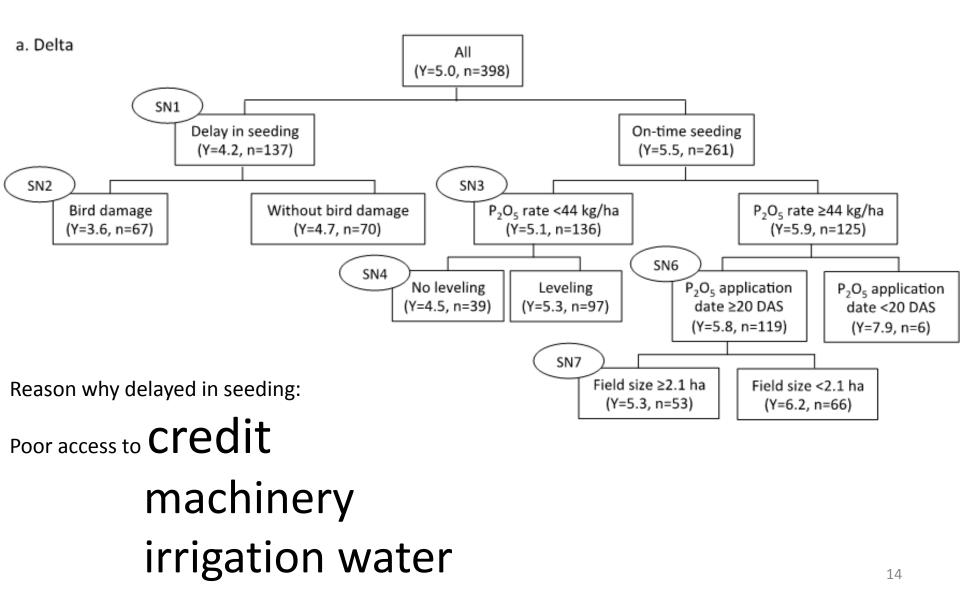

To view data details: Click on the map.

Climate risk (drought, extreme temp, and flooding)

Drought - upland Heat stress in dry season


Scale: 0 to 0.7 = 0 to 70% yield reduction

Scale: 0 to 0.3 = 0 to 30% sterility ₁₂


(van Oort et al. unpublished data)

Success story: closed yield in irrigated lowland rice yield in Senegal River Valley

Causes of yield stagnation in 2000s in the Senegal River Valley

(Tanaka et al. 2015)

Content

- Recent rice production & NRDS targeted production in 2018
- Harvested area, yield and consumption
- Yield gap and its causes
- Yield growth rate and its associated factors
- Innovations
- Conclusions

Yield growth rate in Asia

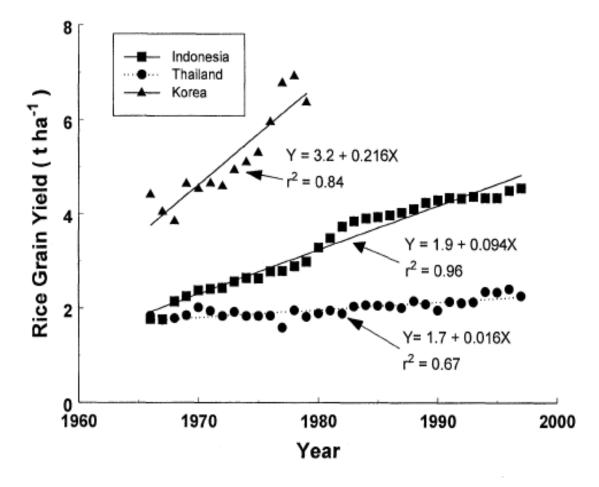
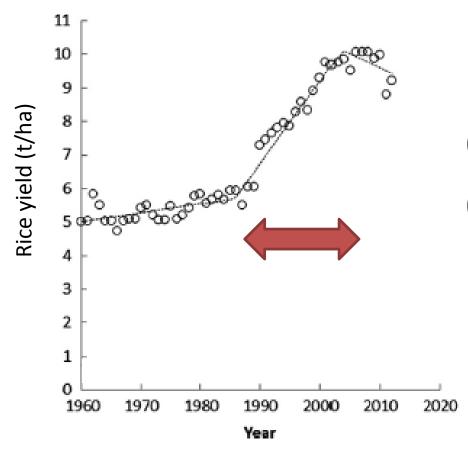



FIG. 1. National average rice yields from 1967 to 1997 in three Asian countries (http://apps.fao.org).

(Cassman, 1999)

Egypt (Cassing etal., 2007)

- (i) a physically concentrated rice industry
 (ii) stress D & D offer
- (ii) strong R & D effort(iii) policy reform that created price incentive for rice farmers

Assessment of rice self-sufficiency in 2025 in eight African countries

Table 4

Production/consumption (P/C) for scenarios 2025 with no area expansion.

	Production/consumption (<i>P/C</i>) for scenarios 2025 with no area expansion						
	Current diet						
	No yield increase	Y trend '07–'12	Yield +1 t ha ⁻¹ (78kg/ha/yr)	Yield +2 t ha ⁻¹ (156kg/ha/	-	80%+ double crop	
Burkina	0.35	0.54	0.51	0.68	0.92	0.92	
Faso							
Ghana	0.13	0.33	0.22	0.31	0.62	0.64	
Mali	0.59	0.89	0.78	0.96	1.22	1.79	
Nigeria	0.37	0.64	0.54	0.72	1.10	1.55	
Tanzania	0.57	0.57	0.96	1.35	1.84	1.90	
Uganda	0.65	0.78	1.00	1.34	1.59	1.59	
Zambia	0.38	1.18	0.69	1.01	2.54	2.54	
Egypt	0.99	0.99	0.99	0.99	0.96	0.96	
Total	0.55	0.73	0.70	0.85	1.12	1.39	
Total excl.	0.41	0.65	0.61	0.80	1.17	1.53	
Egypt							

(van Oort et al., 2015)

Factors affecting yield growth rate	Example
Share of irrigated rice area in total rice area	Higher yield growth due to higher input response in irrigated systems

(based on Saito et al. 2015)

Factors affecting yield growth rate	Example
Share of irrigated rice area in total rice area	Higher yield growth due to higher input response in irrigated systems
Irrigated and rainfed rice physical area expansion	Low yield growth rate due to expanded area in high risky rainfed environments

Factors affecting yield growth rate	Example
Share of irrigated rice area in total rice area	Higher yield growth due to higher input response in irrigated systems
Irrigated and rainfed rice physical area expansion	Low yield growth rate due to expanded area in high risky rainfed environments
Rice cropping intensification	Enhanced yield growth due to double cropping in Senegal River Valley

Factors affecting yield growth rate	Example		
Share of irrigated rice area in total rice area	Higher yield growth due to higher input response in irrigated systems		
Irrigated and rainfed rice physical area expansion	Low yield growth rate due to expanded area in high risky rainfed environments		
Rice cropping intensification	Enhanced yield growth due to double cropping in Senegal River Valley		
Varieties	Genetic gains in yield and high adoption rate in Madagascar		

Factors affecting yield growth rate	Example
Share of irrigated rice area in total rice area	Higher yield growth due to higher input response in irrigated systems
Irrigated and rainfed rice physical area expansion	Low yield growth rate due to expanded area in high risky rainfed environments
Rice cropping intensification	Enhanced yield growth due to double cropping in Senegal River Valley
Varieties	Genetic gains in yield and high adoption rate in Madagascar
Fertilizer	Subsidy; knowledge (e.g. apply right time & right amount)

Factors affecting yield growth rate	Example
Share of irrigated rice area in total rice area	Higher yield growth due to higher input response in irrigated systems
Irrigated and rainfed rice physical area expansion	Low yield growth rate due to expanded area in high risky rainfed environments
Rice cropping intensification	Enhanced yield growth due to double cropping in Senegal River Valley
Varieties	Genetic gains in yield and high adoption rate in Madagascar
Fertilizer	Subsidy; knowledge (e.g. apply right time & right amount)
High yield levels approaching potential yield and increasing competition for water resources	Egypt

Factors affecting yield growth rate	Example
Share of irrigated rice area in total rice area	Higher yield growth due to higher input response in irrigated systems
Irrigated and rainfed rice physical area expansion	Low yield growth rate due to expanded area in high risky rainfed environments
Rice cropping intensification	Enhanced yield growth due to double cropping in Senegal River Valley
Varieties	Genetic gains in yield and high adoption rate in Madagascar
Fertilizer	Subsidy; knowledge (e.g. apply right time & right amount)
High yield levels approaching potential yield and increasing competition for water resources	Egypt
Government/institutional support for rice	Poor irrigation scheme management

Factors affecting yield growth rate	Example
Share of irrigated rice area in total rice area	Higher yield growth due to higher input response in irrigated systems
Irrigated and rainfed rice physical area expansion	Low yield growth rate due to expanded area in high risky rainfed environments
Rice cropping intensification	Enhanced yield growth due to double cropping in Senegal River Valley
Varieties	Genetic gains in yield and high adoption rate in Madagascar
Fertilizer	Subsidy; knowledge (e.g. apply right time & right amount)
High yield levels approaching potential yield and increasing competition for water resources	Egypt
Government/institutional support for rice	Poor irrigation scheme management
Price incentive (or high demand)	Rapid increase in yield after food crisis

Content

- Recent rice production & NRDS targeted production in 2018
- Harvested area, yield and consumption
- Yield gap and its causes
- Yield growth rate and its associated factors
- Conclusions
- (Innovations)

Conclusions 1/4

- Production increased
- Yield has been stagnated
- Large yield gap, but large variation
- Various factors can affect yield growth rate

Conclusions 2/4

Short-term investment option

Improve farmers' and/or other value chain actors' access to:

- inputs (e.g. fertilizer)
- credit
- provision of service (e.g. improved practices, machineries)

market

in the locations where potential impact will be high (e.g. large yield gap; low climate risk; value chain actors availability; short distance to market; high demand)

Challenges across 15 presentations in this meeting

Challenge	Private sector (%, n=5)	Development project (%, n=4)	Country (% <i>,</i> n=6)	Total (%)
Market	80	75	83	80
Policy	80	50	50	60
Infractracture (e.g. road, irrigation)	80	25	67	60
Crop management and post- harvest practices (technology				
availabilty; knowledge gap)	80	75	33	60
Mechanization (e.g. processing)	40	25	83	53
Inputs (e.g. fertilizer; pesticides)	60	75	33	53
Finance	40	100	33	53
Seed	60	50	33	47
Extension service	20	25	17	20
Climate change	0	25	17	13

Conclusions 3/4

Long-term plan

- Determine target yield level and self-sufficiency level based on realistic yield growth rate (100-200kg/ha/year) and yield gap
- Accelerate yield growth rate for enhanced rice production
- Identify (i) most suitable new land for rice area expansion and (ii) areas that should be protected

Conclusions 4/4

AfricaRice and its partners can

- quantify yield gap and identify its causes
- assess climate risk

- generate/disseminate scientific-based options including:
 - decision support tool "RiceAdvice"
 - climate resilient varieties
 - other technologies & innovations

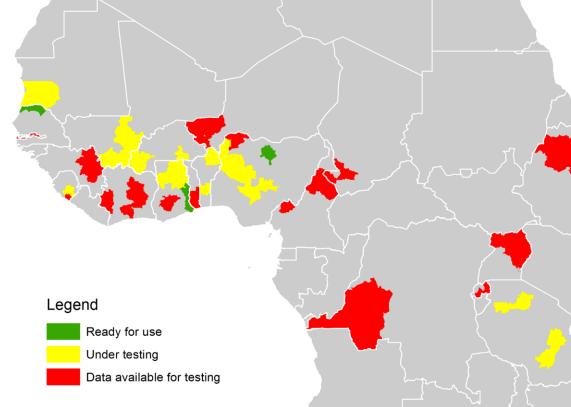
Innovations along with rice value chains

http://www.africarice.org/

http://www.ricehub.org/

Thank you! email: k.saito@cgiar.org

- Free android-based app
- A decision support tool on crop management options
- Self target setting
 ✓ Yield level & budget base
- Best fertilizer choice for cost saving
- Offline


					8 🖋 🤿 🛿 8:57
< 🚺 Outpu	it page				
Field size (h	a) 1.0		Targe	t yield (t/ha)	0.8(
Expected so date	owing 6/21/201	4	Expec durati	ted crop	131-140
Expected seedling age	Less thar e	n 20 day	'S		
TOTAL FERTILIZ	ER REQUIRED				
Farmer's fert	ilizer				
46-0-0			50 kg		
16-12-16			50 kg		
Fertilizer to b	e purchased				
46-0-0			256 kg	1	
18-46-0			33 kg	,	
0-0-60			62 kg		
FERTILIZER APPLICATION PLAN					
Farmer's fertilizer	Transplanting (basal)	46-50 (tillerin		73-77 DAS (panicle initiation)	98-102 DAS (booting)
46-0-0	50 kg			i.	
16-12-16	50 kg				
Fertilizer to be purchased					
46-0-0	6 kg	103 kg		103 kg	43 kg
18-46-0	33 kg				
0-0-60	62 kg				
FERTILIZER COS	ST AND PADDY PRI	CE			
Total fertilize			70,218	3	
Expected tot	al paddy incom	e	960,00	00	

Yield advantage using RiceAdvice over farmer practices

Yield difference % between RiceAdvice (to and farmers practice (t/ha)	6 of farmers otal = 322*)	Yield in farmers' practices (t/ha)	Introducing RiceAdvice
x =<-2	2	8.1	increased
-2< x =<-1	4	7.4	4
-1< x =< 0	14	6.1	yield by $1 t/ha \&$
0< x =< 1	34	5.2	farmers' income
1< x =< 2	30	4.8	by 200 USD/ha
2< x =< 3	9	3.8	
3< x	8	4.4	

* Burkina Faso (17), Ghana (50), Mauritania (20), Mali (28), Nigeria (60), Senegal (128), and Sierra Leone (19)

RiceAdvice network

Partners

National Agricultural Research and Extension Institutes - 22 countries Competitive African Rice Initiative (CARI) – 4 countries Syngenta foundation – 3 countries West Africa Rice Coordinating Project (funded by AGRA) – 5 counties WAAPP – 7 countries (planning phase)